IS200/IS605 family single-strand transposition: mechanism of IS608 strand transfer

نویسندگان

  • Susu He
  • Catherine Guynet
  • Patricia Siguier
  • Alison B. Hickman
  • Fred Dyda
  • Mick Chandler
  • Bao Ton-Hoang
چکیده

Transposase, TnpA, of the IS200/IS605 family member IS608, catalyses single-strand DNA transposition and is dimeric with hybrid catalytic sites composed of an HUH motif from one monomer and a catalytic Y127 present in an α-helix (αD) from the other (trans configuration). αD is attached to the main body by a flexible loop. Although the reactions leading to excision of a transposition intermediate are well characterized, little is known about the dynamic behaviour of the transpososome that drives this process. We provide evidence strongly supporting a strand transfer model involving rotation of both αD helices from the trans to the cis configuration (HUH and Y residues from the same monomer). Studies with TnpA heterodimers suggest that TnpA cleaves DNA in the trans configuration, and that the catalytic tyrosines linked to the 5'-phosphates exchange positions to allow rejoining of the cleaved strands (strand transfer) in the cis configuration. They further imply that, after excision of the transposon junction, TnpA should be reset to a trans configuration before the cleavage required for integration. Analysis also suggests that this mechanism is conserved among members of the IS200/IS605 family.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Stranded DNA Transposition Is Coupled to Host Replication

DNA transposition has contributed significantly to evolution of eukaryotes and prokaryotes. Insertion sequences (ISs) are the simplest prokaryotic transposons and are divided into families on the basis of their organization and transposition mechanism. Here, we describe a link between transposition of IS608 and ISDra2, both members of the IS200/IS605 family, which uses obligatory single-strande...

متن کامل

Reconstitution of a functional IS608 single-strand transpososome: role of non-canonical base pairing

Single-stranded (ss) transposition, a recently identified mechanism adopted by members of the widespread IS200/IS605 family of insertion sequences (IS), is catalysed by the transposase, TnpA. The transposase of IS608, recognizes subterminal imperfect palindromes (IP) at both IS ends and cleaves at sites located at some distance. The cleavage sites, C, are not recognized directly by the protein ...

متن کامل

Single strand transposition at the host replication fork

Members of the IS200/IS605 insertion sequence family differ fundamentally from classical IS essentially by their specific single-strand (ss) transposition mechanism, orchestrated by the Y1 transposase, TnpA, a small HuH enzyme which recognizes and processes ss DNA substrates. Transposition occurs by the 'peel and paste' pathway composed of two steps: precise excision of the top strand as a circ...

متن کامل

Mechanism of IS200/IS605 Family DNA Transposases: Activation and Transposon-Directed Target Site Selection

The smallest known DNA transposases are those from the IS200/IS605 family. Here we show how the interplay of protein and DNA activates TnpA, the Helicobacter pylori IS608 transposase, for catalysis. First, transposon end binding causes a conformational change that aligns catalytically important protein residues within the active site. Subsequent precise cleavage at the left and right ends, the ...

متن کامل

Structuring the bacterial genome: Y1-transposases associated with REP-BIME sequences†

REPs are highly repeated intergenic palindromic sequences often clustered into structures called BIMEs including two individual REPs separated by short linker of variable length. They play a variety of key roles in the cell. REPs also resemble the sub-terminal hairpins of the atypical IS200/605 family of insertion sequences which encode Y1 transposases (TnpA(IS200/IS605)). These belong to the H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013